
American Sign Language Alphabet Recognition Using
Convolutional Neural Networks with Multiview

Augmentation and Inference Fusion

Wenjin Taoa, Ming C. Leua, Zhaozheng Yinb,∗

aDepartment of Mechanical and Aerospace Engineering, Missouri University of Science and
Technology, Rolla, MO 65409, USA

bDepartment of Computer Science, Missouri University of Science and Technology, Rolla,
MO 65409, USA

Abstract

American Sign Language (ASL) alphabet recognition by computer vision is

a challenging task due to the complexity in ASL signs, high interclass similar-

ities, large intraclass variations, and constant occlusions. This paper describes

a method for ASL alphabet recognition using Convolutional Neural Networks

(CNN) with multiview augmentation and inference fusion, from depth images

captured by Microsoft Kinect. Our approach augments the original data by

generating more perspective views, which makes the training more effective and

reduces the potential overfitting. During the inference step, our approach com-

prehends information from multiple views for the final prediction to address the

confusing cases caused by orientational variations and partial occlusions. On

two public benchmark datasets, our method outperforms the state-of-the-arts.

Keywords: American Sign Language, Convolutional Neural Networks (CNN),

Data augmentation, Fusion

1. Introduction

American Sign Language (ASL) is an important communication way to con-

vey information among the deaf community in North America. Although it is

∗Corresponding author
Email address: yinz@mst.edu (Zhaozheng Yin)

Preprint submitted to Journal of LATEX Templates September 12, 2018



primarily used by people who have hearing or speech difficulties, similar signs

also can be used in Natural User Interface (NUI) systems to realize human-5

computer/robot interaction by hand gestures. Its automatic recognition using

various sensing devices has been studied extensively for decades with signifi-

cant progress having been made. There are mainly two categories of sensing

devices used in those studies: (1) wearable devices, such as a cyber glove em-

bedded with a flex sensor or an Inertial Measurement Unit (IMU) sensor, and10

a set of trackable markers of a motion capturing system; and (2) non-wearable

devices, or markerless vision-based devices, such as a RGB camera or a depth

camera. Wearable devices directly sense the hand status like adjacent joints’

angles, spatial positions and movements, which can provide fairly precise infor-

mation of the hand [1, 2]. However, they are still too heavy and uncomfortable15

for daily use. Markerless vision-based recognition has been increasingly popular

recently because it does not need sensors attached to a human and the low-

cost vision/depth cameras such as Microsoft Kinect are commercially available.

However, it is still challenging to recognize ASL signs because of the complex-

ities of these signs, high interclass similarities, large intraclass variations, and20

constant finger occlusions.

1.1. Related Work

In this paper, we focus on recognizing the alphabet of American Sign Lan-

guage (ASL). In general, the ASL alphabet recognition task is formulated as

two subtasks: feature extraction and subsequent multiclass classification. Re-25

searchers have been using different methods to extract discriminative features

and create powerful classifiers.

Pugeault and Bowden [3] applied Gabor filters to extract features from both

color and depth images at 4 different scales. Then a multiclass random forest

classifier was used to recognize the 24 static ASL alphabet signs. They had 49%30

recognition rate in the leave-one-out experiment. Half of the signs could not

be recognized, showing that Gabor filters cannot capture enough discriminative

information for differentiating different signs. In addition, they developed a

2



realtime recognition system which provides an interface for the user to select the

desired sign among ambiguous ones. It is worth mentioning that they publicized35

their dataset well and this dataset has been the most common benchmark in

this research area, as surveyed in the following.

Wang et al. [4] also used color and depth images for recognition. They pro-

posed a Superpixel Earth Mover’s Distance (SP-EMD) metric to measure the

distance between two signs based on the shape, texture and depth informa-40

tion. Then a template matching technique was utilized for the sign classifica-

tion. They reported 75.8% recognition rate on the benchmark dataset. Some

researchers only focused on either color or depth image. Maqueda et al. [5] de-

ployed a Volumetric Spatiograms of Local Binary Patterns (VS-LBP) descriptor

on color videos or images, without using depth images, for extracting spatio-45

temporal features. By using a Support Vector Machine (SVM) classifier, they

had 83.7% leave-one-out accuracy on the benchmark dataset. Nai et al. [6] ex-

tracted features from only depth images on randomly positioned line segments

and used a random forest for classification, with 81.1% accuracy reported in

their paper.50

Some studies attempted to exploit the 3D information embedded in the

depth images (3D approach). Kuznetsova et al. [7] implemented an Ensemble of

Shape Function (ESF) descriptor [8] on the 3D point cloud for feature extraction

and a multi-layered random forest for classification. Zhang et al. [9] proposed a

Histogram of 3D Facets (H3DF) descriptor to encode the 3D shape information55

of different hand gestures. Then they used a SVM with a linear kernel for the

classification step and got 73.3% in the leave-one-out accuracy. Later, Zhang and

Tian [10] combined their H3DF with a dense sampling method and achieved an

improved accuracy of 83.8%. Rioux-Maldague and Giguére [11] created a mask

from the depth image and applied it on the intensity image to filter out the hand60

region to form the intensity features. Six binary images were generated using

cross-sections of depth images to form depth features, which were then fed into

a Deep Belief Network (DBN) and achieved 77% recall and 79% precision on

the benchmark dataset. These 3D approaches are promising to achieve better

3



performance than image representations due to the extra dimension. However,65

the 3D point cloud obtained from the depth image is sparse at the regions

with large gradients and absent at the occluded areas, which affects the overall

performance. To fully exploit the 3D benefits from the depth image, some 3D

reconstruction methods can be used to recover more valuable information.

Due to the articulated structure of hands, some studies implemented a hand70

part segmentation step before the gesture recognition (bottom-up approach).

Keskin et al. [12] extracted depth comparison features from depth images fol-

lowing the method proposed by Shotton et al. [13] and fed them into a per-pixel

random forest classifier. The final predicted label for the whole image is deter-

mined by majority voting. They reported their leave-one-out recognition rate as75

84.3% on the benchmark dataset. Furthermore, they introduced multi-layered

random forests in classifying hand parts to estimate its pose. This classifier is

trained using synthetic depth images which have the parts’ groundtruth of a

hand. To generate more realistic training data for per-pixel hand part classifi-

cation, a colored latex glove was employed in the research of Dong et al. [14].80

They added kinematic constraints on the estimated joint locations to improve

the localization accuracy, based on which 13 key angles of the hand skeleton

were extracted and fed into a random forest classifier, resulting in 70% recog-

nition rate on the benchmark dataset. One of the major drawbacks for these

bottom-up approaches is that the sign recognition performance is highly de-85

pendent upon the result of the hand part segmentation, and it is challenging

to improve the performance of the hand part segmentation because of the high

complexities and constant occlusions.

Recently, deep learning methods such as Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) have demonstrated their ex-90

traordinary performance in various classification and recognition tasks. For

example, in the traffic sign classification task and the ImageNet challenge, the

CNN systems achieved even better performances than those of humans [15, 16].

Unlike the handcrafted feature extractor, which is designed to capture only spe-

cific patterns, the deep learning based feature extractor is automatically trained95

4



to capture the most discriminative features using the real data. Ameen and

Vadera [17] introduced a CNN model with both color and depth inputs in the

ASL alphabet recognition task. This model has two convolutional layers for

each input to extract features from them. Those two sets of features are con-

catenated into one before being fed into fully connected layers. They reported100

the accuracy of 80.34% on the benchmark dataset. RNNs have also been utilized

for hand gesture recognition tasks and achieved promising results [18].

1.2. Proposed Method

Depth images contain distance information from the camera plane to the

objects in the camera view, where each pixel represents a measured distance.105

Therefore, it is easier to segment the target object in a depth image than a

color image. Thus, this research focuses on recognizing finger spelling signs

from depth images as follows:

• Considering the challenges of the ASL alphabet recognition task, we choose

CNN as the basic model to build the classifier because of its powerful110

learning ability that has been shown.

• To fully exploit the 3D information provided by depth images, we develop

a novel multiview augmentation strategy. It generates more views from

different perspectives, in order to augment the perspective variations that

cannot be achieved using traditional image augmentation methods.115

• To solve the interclass similarity issues caused by perspective variations

and partial occlusions, we first make predictions for all individual views

and then fuse information from them for the final prediction.

The remainder of this paper is organized as follows. Our proposed methods

of multiview augmentation, CNN model, and inference fusion are detailed in120

Sections 2, 3 and 4, respectively. The experimental setups and experimental

results using the public datasets are described in Sections 5 and 6. Finally,

Section 7 gives the conclusions of this research.

5



2. Multiview Augmentation

To train a valid CNN classifier with good performance, a large amount of125

labeled data needs to be fed into it. However, it is always time-consuming

and costly to collect enough data with annotated labels. Data augmentation

is a common method to solve such an issue, which synthesizes additional data

derived from original ones.

Traditionally, data augmentation refers to implementing a series of image130

transformation techniques on the original images, which consist of rotating,

scaling, shifting, flipping, shearing, etc. The image transformation is able to

introduce more variations and still keep the recognizable features. However,

the basic image transformation cannot introduce realistic variations of different

perspectives (e.g., out-of-plane transformations in the real world), which are135

common for hand gestures because they are highly perspective-dependent.

Figure 1: Multiview augmentation strategy.

To synthesize those perspective variations, we propose a multiview augmen-

tation strategy illustrated in Figure 1. A hand gesture is represented as a depth

image in its original view, from which a 3D point cloud is obtained. Then addi-

tional virtual cameras are set up and oriented to the point cloud with different140

perspectives. Finally, a set of additional views are generated from those dis-

tributed virtual cameras. The central image on the right hand side in Figure 1

6



is the original depth image, based on which the other views are generated.

The generation process of a new view is shown in Figure 2. Given a hand

depth image I with M pixels (Figure 2(a)), to extract the point cloud P =

{p1, ..., pm, ..., pM} from the depth image, each pixel I(i, j) is projected into the

3D space as a point pm = (p
(x)
m , p

(y)
m , p

(z)
m ). This projection first translates the

origin to the image center and then uses the depth values as the Z values, which

is formulated as follows (Figure 2(b)):

p(x)m = j − w/2

p(y)m = −i+ h/2

p(z)m = I(i, j)

(1)

where i and j represent the indices of row and column of I, respectively, w and

h are the width and height of the depth image, respectively.145

Figure 2: Generation of a new view.

To capture the point cloud from a new perspective, a yaw-pitch-roll rotation

transformation on the point cloud around its volume center is implemented. For

point pm in P, its new location after rotation can be calculated by

p′m = R(α, β, γ)pm (2)

7



where R(α, β, γ) is the rotation matrix, α, β and γ represent yaw, pitch and

roll angles around z, y and x axes, respectively. It can be further expressed as

a multiplication of three orthogonal rotation matrices [19]:

R(α, β, γ) = Rz(α)Ry(β)Rx(γ)

=


cosα cosβ r12 r13

sinα cosβ r22 r23

− sinβ cosβ sin γ cosβ cos γ


where

r12 = cosα sinβ sin γ − sinα cos γ

r13 = cosα sinβ cos γ + sinα sin γ

r22 = sinα sinβ sin γ + cosα cos γ

r23 = sinα sinβ cos γ − cosα sin γ

(3)

By implementing the yaw-pitch-roll rotation on each point, a new point

cloud P ′ is generated (Figure 2(c)). Then P ′ is reprojected onto a plane to

form a new depth image (Figure 2(d)), which is the reverse process of point

cloud extraction in Equation 1. After reprojection, the new depth image might

have holes because the occluded regions in the original image get exposed in the150

new one after the yaw-pitch-roll rotation transformation. Those small holes can

be filled by interpolation using their neighboring pixels’ values (Figure 2(e)).

Then the hand region in the new image is cropped and re-centered by removing

its surrounding isolated noises (Figure 2(f)).

3. CNN Model155

The overall architecture of our CNN model is shown in Figure 3. It is

composed of a layered feature extraction module and a classification module.

In the feature extraction module, suppose there are N depth images Xn, n ∈

[1, N ] after data augmentation, they are scaled to the size 32 × 32 (width ×

height) and normalized to the interval [0, 1], and then fed into three 5× 5 con-160

volutional layers for feature extraction. Rectified Linear Unit (ReLU) activation

8



Figure 3: The overall architecture of our CNN model. ‘Conv.’ and ‘Pool.’ denote the operations

of convolution and pooling, respectively.

function [20] is applied to each convolutional operation. Then each convolutional

layer is followed by a 2× 2 max pooling layer, which downsamples the previous

feature map by a half.

The classification module accepts the 4 × 4 × 128 feature map from the

feature extraction module and flattens it as a 2048 feature vector. Then two

fully connected layers are used to densify the feature vector to the dimensions

of 128 and C sequentially, where C is the number of ASL alphabet sign classes.

Then this C-dimensional score vector S([S1, ..., Sc, ..., SC ]) is transformed to

output the predicted probabilities with a softmax function as follows:

P (yn = c|Xn) =
exp(Sc)∑C
c=1 exp(Sc)

(4)

where P (yn = c|Xn) is the predicted probability of being class c for sample Xn.165

Dropout has been proved to be a powerful regularization technique used

to avoid the overfitting, which randomly drops units from the neural network

during training [21]. Therefore, it is implemented after each pooling layer in

our CNN model.

The process of training a CNN model involves optimization of the network’s

parameters w to minimize the cost function for the training dataset X. We

select the commonly used regularized cross entropy [20] as the cost function,

which is

L(w) =

N∑
n=1

C∑
c=1

ync log[P (yn = c|Xn)] + λl2(w) (5)

9



where ync is 0 if the ground truth label of Xn is the cth label, and is 1 otherwise.170

The l2 regularization term is appended to the loss function for penalizing large

weights, and λ is its coefficient.

4. Multiview Inference Fusion

Due to the high interclass similarities, some signs are almost the same from

certain perspectives. The inference relying on only one view may not be con-175

vincing enough. Therefore, we propose a multiview inference fusion strategy

in order to augment the speculation of each individual view, as illustrated in

Figure 4.

Figure 4: Multiview inference fusion strategy.

In the inference step, suppose the CNN model described in Section 3 has

been trained with the augmented dataset, and we have Ntest depth images180

for inference. First of all, each query sample is preprocessed to the right in-

put X0
n, n ∈ [1, Ntest] which has the size of 32 × 32 and the value range of

[0, 1]. Then, similar to the multiview augmentation process, a set of new views

{X1
n, X

2
n, · · · , XNAPS

n } are generated from the original ones X0
n, where NAPS

is the number of augmentations per sample. After that, there are (NAPS + 1)185

views {X0
n, X

1
n, · · · , Xv

n, · · · , XNAPS
n } for the original query sample. Each view

10



Xv
n, v ∈ [0, NAPS ] is inferred individually by the trained CNN to get the prob-

ablity distribution P v of the top-K predicted classes (K ∈ [1, C], e.g., K = 5).

Then they are fed into an inference fusion step for the final prediction.

In the inference fusion step, predictions from all individual views are fused190

together. We introduce the informativity value Iv to evaluate the prediction

confidence at each view v. Iv is calculated with Equation 6, which is modified

from the Shannon entropy of a discrete probability distribution to vary in the

interval of [0, 1].

Iv =

∑K
k=1 p

v
k log pvk

logK
+ 1 (6)

where v is the index of views and k is the index of top-K candidates. pvk195

represents the probability of the kth class candidate at the vth view. Iv will be

close to 0 if all the top-K candidates have similar probabilities (i.e., pvk ≈ 1/K),

and 1 if the probability of top-1 class candidate is about reaching 1 (i.e., pv1 ≈ 1).

Then every predicted probability pvk at the vth view is weighted by Iv of this

view. The final predicted label is chosen as the one that maximizes the Ivpvk200

value:

ŷfusion = max
v

ŷvfusion (7)

where

ŷvfusion = arg max
k

Ivpvk (8)

5. Experiments

5.1. Datasets

To compare our method with others, we evaluate it on the public ASL alpha-

bet dataset [3]. Some examples of the depth images in this dataset are shown in205

Figure 5. It has 24 finger spelling signs (‘J ’ and ‘Z ’ are excluded because they

involve finger movement) captured by a Kinect with color and depth images

recorded. Those signs were performed by 5 different subjects and each of the

11



24 signs consists of about 500 to 600 samples. As shown in Figure 5, the hand

regions were approximately cropped.

Figure 5: Depth image examples of the 24 signs in the ASL alphabet dataset[3].

210

To validate the generalization of our method, the NTU digit dataset [22] is

also chosen for experiments. This dataset has 10 signs representing digits from

0 to 9 captured by a Kincet containing color and depth images as well. They

are performed by 10 different subjects and each sign has 10 samples. Examples

of the depth image of the 10 signs in this dataset are shown in Figure 6. Each215

image contains background and the hand region is not cropped or annotated.

Figure 6: Depth image examples of the 10 signs in the NTU digit dataset [22].

12



Figure 7: Hand region segmentation. S1-6 denote the processing steps.

5.2. Preprocessing

The image size of an input sample is a design parameter when building a

CNN model and is fixed after the model is created. Thus, it only accepts input

samples with the predefined sizes, e.g., our CNN model described in Section 3220

needs each input sample to have the uniform size of 32× 32 (width× height).

Samples from the first dataset introduced in Section 5.1 have various sizes

(as shown in Figure 5). Although each sample in the second dataset shares the

same size (as shown in Figure 6), the size is 640 × 480 and the hand region

is only a small part of the entire image. Therefore, a preprocessing procedure225

is needed to prepare the data for the CNN model. Taking an image from the

NTU digit dataset [22] as an example, this process is illustrated in Figure 7,

where S1-6 denote the processing steps. Suppose there is a raw depth image D

(Figure 7(a)) captured by a depth camera and it is assumed that the hand is

the closest object to this camera. First, a band-pass filter is applied to filter out230

the pixels in the range of [dmin, dmin + δ], where dmin is the minimum distance

value and δ is the threshold distance that should approximately represent the

13



hand occupation along the direction out of the image. After that, the depth

image is reversed using the equation D′ = dmin + δ − D (if D 6= 0), and

then on the new depth image D′, hand regions that are nearer to the camera235

will be brighter, while further regions will be darker. This conversion will let

our CNN model focus on the nearer regions which contain more information in

distinguishing different signs. There is only one hand and it is the frontmost

object in a depth image for both of the datasets. Then the bounding box of the

hand is detected (Figure 7(b)) and cropped by using histograms projected onto240

x and y axes (Figure 7(c)).

The palm center is approximated by calculating the mass center of the depth

image and the palm is segmented as a circular region (Figure 7(d)). Then we

calculate the polar histogram of the pixels that are outside the palm region,

followed by a clustering step. The number of pixels is counted for each cluster.245

The cluster with the most pixels is segmented as the arm and its direction is

taken as the mean of the directions of all its pixels (Figure 7(e)). Finally the

arm region is removed, the image is rotated to make the arm direction point

down and translated to make the mass center as the image center. Finally, the

hand image is reshaped to the size of 32 × 32 and normalized to the interval250

of [0, 1] (Figure 7(f)). Note that the processing steps S3-6 in Figure 7 can be

iterated to get a better segmentation result because in some cases the resulted

hand still has a large arm area. For example, as shown in Figure 8, the first S3-6

processing does not remove all the arm region (Figure 8(d)). By implementing

the second S3-6 processing, most of the arm pixels are removed (Figure 8(g)).255

Figure 8: An example of iteration of the processing steps S3-6 for better segmentation result.

14



The above preprocessing methods are implemented on the two datasets using

tools from the OpenCV library [23], and the resulted samples are shown in

Figures 9 and 10, respectively. For the ASL benchmark dataset, the direction

normalization step (S6 in Figure 7) is discarded because some signs (e.g., ‘G ’

and ‘H ’) are related to orientations. The implementation of preprocessing and260

hand segmentation removes the background and prepares the images to have

a centered hand on each with a uniform size 32 × 32 for the subsequent CNN

training process.

Figure 9: Examples of the 24 signs of each of the five subjects in the preprocessed ASL

alphabet dataset.

Figure 10: Examples of the 10 signs of each of the ten subjects in the preprocessed NTU digit

dataset.

15



5.3. Evaluation Metric

We conduct comparisons with state-of-the-art recognition results on the265

above two datasets using the same evaluation policies as in [3], which are half-

half and leave-one-out policies. For the half-half policy, one half of the dataset

is randomly chosen and fed into the CNN model for training, and the other

half is reserved for evaluation. For the leave-one-out policy, the samples from

Nsubjects−1 out of Nsubjects subjects are used for CNN training, and the samples270

from the left one subject are used for evaluation. We employed a few commonly

used metrics to evaluate this multiclass classification performance, which are

• Accuracy

Accuracy =

∑Ntest

n 1(ŷn = yn)

Ntest
(9)

• Precision and Recall

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(10)

• F score

F = 2 · Precision ·Recall
Precision+Recall

(11)

where 1() in Equation 9 is an indicator function. In Equation 10, True Positive

(TP) describes a sample Xn from a certain class yn that is correctly classified

as yn; False Positive (FP) is defined as a sample Xn from a ’not yn’ class is275

incorrectly classified as yn; False Negative (FN) means a sample Xn of the class

yn is misclassified as other ’not yn’ classes. In Equation 11, F score evaluates

the overall performance of the of Precision and Recall, which is their harmonic

mean in the interval [0,1].

5.4. Some CNN Training Details280

TensorFlow [24] is used in creating the CNN model described in Section 3.

For the hyperparameters, we set the batch size, learning rate, dropout rate,

regularizer as 256, 0.001, 0.1, and 1e-5, respectively. The Adam optimizer [25]

16



is used in training, and the training is stopped after 100 epochs, which takes

approximately 2 hours for a leave-one-out experiment on a workstation with one285

12 core Intel Xeon processor, 64GB of RAM and one Nvidia Geforce 1080 Ti

graphic card.

6. Results and Discussion

6.1. Evaluation of the CNN Architecture

Due to the high architectural complexity and parametric variation of a CNN290

model, it is not feasible to evaluate all possible architectures and associated

parameters (e.g., number of convolutional layers, kernel size, activation func-

tion, pooling method, etc.). In this study, a few representative CNN designs

with increasing numbers of layers and different parameters are compared to

find the optimal design. As shown in Table 1, eight CNN architectures (listed295

in columns) are selected and their performance of leave-one-out evaluations is

compared. We can see that increasing the depth and the number of filters,

from the left (arch-i) to the right (arch-viii), improves the evaluation accuracy.

Regarding to the convolutional kernel size, the size of 5 outperforms the size of

3. Therefore, the design of arch-viii is chosen as our baseline CNN architecture300

(see Figure 3).

6.2. Evaluation of the Multiview Augmentation and Inference Fusion Strategies

To evaluate the proposed multiview augmentation and inference fusion strate-

gies, we compare our methods, including MVA (multiview augmentation) and

MVA+IF (multiview augmentation and inference fusion) methods, to JA (jit-305

tering augmentation) method [15], which has been proved to be an effective

method and is commonly used in image classification tasks.

For the MVA and MVA+IF methods, four NAPS values 6, 12, 18 and 24

are selected, i.e., new views are generated by implementing yaw-pitch-roll ro-

tation on the extracted point cloud around each axis for [±10◦], [±10◦,±20◦],310

[±10◦,±20◦,±30◦], and [±10◦,±20◦,±30◦,±40◦], yielding 6, 12, 18, and 24

17



CNN arch.

i ii iii iv v vi vii viii

Input (32× 32× 1)

C3-8 C5-8 C3-8 C5-8 C3-16 C5-16 C3-32 C5-32

Maxpool

C3-16 C5-16 C3-16 C5-16 C3-32 C5-32 C3-64 C5-64

Maxpool

C3-32 C5-32 C3-64 C5-64 C3-128 C5-128

Maxpool

FC-1024 FC-512 FC-1024 FC-2048

FC-128

FC-24

Softmax

Accuracy(%) 81.8 82.7 82.7 84.2 83.0 84.1 84.7 84.8

Table 1: Comparison of leave-one-out accuracies on the ASL benchmark dataset (without

data augmentation) with different CNN architectures (listed in columns). The convolutional

layer parameters are denoted as ‘C{kernel size}-{number of output channels}’. The ReLU

activation function for each convolutional layer is not shown for brevity. The fully connected

layer parameters are denoted as ‘FC-{number of hidden units}’.

augmented views for each sample, respectively. For the MVA+IF method, mul-

tiview augmentations are implemented on both the training data and the testing

data. Thus, each testing image has multiple vector outputs before the IF step.

Then these vector outputs are fused to generate only one probability distribu-315

tion. While for the MVA method, we only augment the data in the training

phase and do not augment the testing data. Therefore, each testing image has

only one vector output, from which the final prediction can be made. As for the

JA method, the same four NAPS values are used; 6, 12, 18, and 24 augmented

samples are generated by randomly translating in the range of [−2,+2] pixels,320

scaling in the range of [0.9, 1.1] ratio, and rotating in the range of [-40, +40]

degrees.

The comparisons of leave-one-out accuracies on the ASL benchmark dataset

are shown in Figure 11 (the half-half accuracies are not considered for compar-

ison purpose because they are about reaching 100%). All the three augmenta-325

18



tion methods have obvious accuracy improvements compared with the model

without using data augmentation. For the JA method, using the NAPS of 6

improves the accuracy from 84.7% to 88.9%, but continuing to increase NAPS

from 6 to 24 does not further improve the accuracy. The mean accuracy of the

four cases (NAPS = 6, 12, 18, 24) for MVA is about 88.8%. Although the accu-330

racy of MVA method with the NAPS of 6 is a little bit lower than that of JA

method, the accuracy increases when increasing the NAPS , which outperforms

JA after NAPS ≥ 12. The highest accuracy of MVA (91.1%) is from the case of

NAPS = 24, which is 2 percentage points higher than JA.

Figure 11: Comparison of leave-one-out accuracies on the ASL benchmark dataset using

the methods of JA (jittering augmentation), MVA (multiview augmentation) and MVA+IF

(multiview augmentation and inference fusion) with different NAPS (number of augmentations

per sample).

By implementing the multiview inference fusion, more signs are correctly335

recognized. MVA+IF demonstrates the highest accuracy in all the four cases

and for the case of NAPS = 18 it reaches the best performance of 92.7% accuracy

among the three methods. Then increasing the NAPS to 24 does not contribute

additional improvement.

19



Overall, the data augmentation techniques, JA and MVA, demonstrate the340

effectiveness in improving the model performance, because the augmentation

process introduces more natural variations to the original dataset to simulate

the potential variations in the unseen samples, which pushes the CNN model

to learn the most discriminative features and makes the training more robust.

Meanwhile, the MVA method outperforms the JA method. It is because the345

finger spelling signs are highly perspective-dependent, i.e., the appearance of

a sign varies significantly from different perspectives, and the MVA method

can generate such perspective variations but the JA method can not. Fur-

thermore, the MVA+IF method fuses the predictions of multiple perspectives

to make a comprehensive inference, which results in better accuracy than the350

MVA method.

6.3. Impact of the Number of Top-K Candidates

To find an appropriate number of top-K candidates (the value of K) for the

multiview inference fusion step described in Section 4, another set of experiments

are conducted on the benchmark dataset. In these experiments, we use different355

K values, i.e., 3, 5, 7 and 9. Then the leave-one-out evaluation strategy is used

and the accuracy evaluated on each of the five subjects is listed in Table 2. We

can see that the four ‘top-K’ cases surpass the ‘MVA’ case due to the multiview

inference fusion step. However, changing the K value from 3 to 9 does not affect

the performance much. Therefore, we choose K = 3 that can provide enough360

entries for the fusion process.

Test subject 1 2 3 4 5

MVA 92.74 86.33 94.34 87.73 88.66

MVA+IF, Top-3 93.56 88.51 94.84 91.55 91.69

MVA+IF, Top-5 93.62 88.52 94.78 91.62 91.66

MVA+IF, Top-7 93.64 88.53 94.79 91.61 91.68

MVA+IF, Top-9 93.63 88.53 94.82 91.63 91.71

Table 2: The leave-one-out accuracy (%) tested on each of the five subjects with different

numbers of top-K candidates on the ASL benchmark dataset.

20



6.4. Performance Comparison with State-of-the-Art Methods on the ASL Bench-

mark Dataset

In this subsection, we compare our results with state-of-the-art performance

on the ASL benchmark dataset in terms of accuracy, precision and recall with365

two evaluation strategies (half-half and leave-one-out). The comparison is sum-

marized in Table 3. The highest accuracies of half-half and leave-one-out strate-

gies in the literature are 100% [9] and 84.3%[12], respectively. For the half-half

evaluation, our methods achieve 99.9%, which is almost 100% (there are only

about 40 samples misclassified out of 32,831 testing samples). For the leave-one-370

out evaluation, our CNN model outperforms the state-of-the-art performance

even without augmentations. The accuracy is improved by 4% with our imple-

mentation of the JA method. By using the MVA method, our model achieves

91% accuracy which is 2% higher than JA. After implementing MVA+IF, the

accuracy is improved by another 2 percent. The best accuracy, precision and375

recall of our results are 92.7%, 93.5% and 92.4%, respectively.

Overall, our CNN model outperforms other methods with the multiview

augmentation and inference fusion strategies. It is known that the leave-one-out

evaluation is a harder task than the half-half evaluation, because in the half-half

experiment, all the testing subjects have already been seen by the CNN model380

during training; but in the leave-one-out experiment, the testing subject has not

been seen. Therefore, the leave-one-out performance can demonstrate how well

the trained model could be generalized to a new subject. Our model can reach

93% leave-one-out accuracy, which is a significant improvement compared to the

previous best benchmark of 84% and is very promising for practical applications.385

6.5. Performance Evaluation on the NTU Digit Dataset

We evaluate the performance of our model on the NTU digit dataset, which

also achieves the best accuracies compared to other methods. The comparison

is listed in Table 4. The MVA method has 100% and 99.7% for the half-half and

leave-one-out accuracies, respectively, which outperforms the results reported390

in the literatures. The MVA+IF method further improve the leave-one-out

21



Method hh-A hh-P hh-R loo-A loo-P loo-R

Pugeault et al. (2011) [3] - 75 53 49 - -

Keskin et al. (2012) [12] 97.8 - - 84.3 - -

Kuznetsova et al. (2013) [7] 87 - - 57 - -

Zhang et al. (2013) [9] 98.9 - - 73.3 - -

Rioux-Maldague and Giguére (2014) [11] - 99 99 - 79 77

Dong et al. (2015) [14] 90 - - 70 - -

Maqueda et al. (2015) [5] 97.5 - - 83.7 - -

Wang et al. (2015) [4] - - - 75.8 - -

Zhang and Tian (2015) [10] 100 - - 83.8 - -

Ma and Huang (2016) [26] 84 - - - - -

Ameen and Vadera (2017) [17] - - - 80.3 82 80

Nai et al. (2017) [6] - - - 81.1 - -

Our CNN 99.7 99.7 99.7 84.7 85.8 84.8

Our CNN+JA 99.9 99.9 99.9 88.9 90.2 89.0

Our CNN+MVA 99.9 99.9 99.9 90.9 91.6 90.8

Our CNN+MVA+IF 99.9 99.9 99.9 92.7 93.5 92.4

Table 3: Performance (%) comparison on the ASL benchmark dataset. hh: half-half, loo:

leave-one-out, A: accuracy, P: precision, R: recall, ‘-’ denotes that the value is not reported in

the paper.

accuracy to 100%, which means that the multiview inference fusion strategy

successfully classify the left 0.3% samples that are misclassfied using only MVA.

6.6. Feature Visualization

Although the CNN model demonstrates superior performance on various395

applications, such as the sign recognition task, it is usually taken as a black box

because of its high architectural complexity and tremendous inner parameters,

and its hyperparameters are tuned by experience or trial-and-error. To have a

better understanding of what the CNN model has learned and what features

are extracted by the convolutional operations, we visualize the learned filters400

and the extracted feature maps of the first convolutional layer since they can

be projected into 2 dimensional images, which is shown in Figure 12. The

32 learned filters of the first convolutional layer are presented on the top. It

22



Method hh-A loo-A

Ren et al. (2011) [22] 93.9 -

Zhang and Tian (2015) [10] 97.5 99.0

Our CNN+MVA 100 99.7

Our CNN+MVA+IF 100 100

Table 4: Performance (%) comparison on the NTU digit dataset. hh: half-half, loo: leave-

one-out, A: accuracy, ‘-’ denotes that the value is not reported in the paper.

is difficult to make some intuitive explanations on these 5 × 5 filters, but by

reviewing the feature maps obtained from each input using these filters, we405

can see that some low-level features like edges and curves are extracted. For

different signs, the filters are able to identify the discriminative feature elements.

For example, the main difference between signs ‘M ’ and ‘N ’ is the thumb’s

position, which is actually learned by the filters (as shown in the feature maps

of ‘N ’, the thumb regions are successfully emphasized compared to the feature410

maps of ‘M ’). Filters and feature maps of the second and third convolutional

layers are not presented here because they involve high dimensional information,

thus, cannot be projected to images for visualization purpose.

6.7. Failure Case Studies

In this subsection, we discuss the signs that are not correctly classified in415

the leave-one-out evaluations on the benchmark dataset. The overall mean

F scores for the 24 signs are illustrated in Figure 13. The model has great

performance (> 95%) on the signs ‘B ’, ‘C ’, ‘D ’, ‘F ’, ‘I ’, ‘L’, ‘O ’, ‘U ’, ‘W ’, ‘X ’,

and ‘Y ’. However, for the signs of ‘E ’, ‘K ’, and ‘Q ’ , the F scores are lower

than 85% due to their high subjectwise variations. For example, as shown in420

Figure 13, different subjects perform the sign of ‘K ’ in different ways, thus it is

difficult for the model to be generalized to the unseen subject in the leave-one-

out evaluations.

The confusion matrices and the most confusing sign pairs of the five subjects

are shown in Figures 14, 15, 16, 17 and 18, respectively. We can see that,425

23



Figure 12: Visualization of the 32 (4 rows × 8 columns) learned filters (top) of the first

convolutional layer, and the top 9 feature maps (the sequence is indexed as shown in A’s

feature maps) for each of the 24 signs in a trained model on the ASL benchmark dataset. The

images with alphabets on the left are the inputs, under which are the feature maps extracted

from the inputs using the learned filters.

24



Figure 13: Mean F score of each of the 24 signs in the leave-one-out evaluations on the ASL

benchmark dataset.

different subjects show different performance on different signs in the leave-one-

out evaluations. For the 1st subject (see Figure 14), there are six confusing

pairs severely misclassified, which are ‘K-G ’, ‘N-T ’, ‘R-K ’, ‘R-U ’, ‘V-K ’, and

‘X-G ’. For example, there are 101 ‘V ’ misclassified as ‘K ’ because of the high

similarity between them (i.e., both have the index and middle fingers pointing430

up). For the 2nd subject (see Figure 15), the most confusing pairs are ‘G-

H ’, ‘V-K ’, and ‘T-E ’. For the 3rd subject showing the best performance (see

Figure 16), most of the signs are successfully classified except the most confusing

pairs ‘A-T ’ and ‘K-L’, where there are 99 ‘A’ and 109 ‘K ’ misclassified as ‘T ’

and ‘L’, respectively. The most confusing pairs of the 4th (see Figure 17) and435

5th (see Figure 18) subjects are ‘G-H ’, ‘N-M ’, ‘T-N ’, and ‘E-S ’, ‘V-K ’, ‘Q-P ’,

respectively.

By reviewing these failure cases, we find that the high similarity between

the confusing pairs makes it difficult to distinguish them, and the significant

subjectwise difference for the same sign makes it difficult to learn this kind of440

unseen variations beforehand.

To address these failure cases for further improving the performance, some

future work can be explored: (1) more subjects can be considered to include

more signing styles for training the model; (2) 3D reconstruction can be imple-

mented to recover more information from the depth image than the current 3D445

25



Figure 14: Confusion matrix and the most confusing pairs of the leave-one-out evaluation on

the ASL benchmark dataset tested on the 1st subject.

Figure 15: Confusion matrix and the most confusing pairs of the leave-one-out evaluation on

the ASL benchmark dataset tested on the 2nd subject.

26



Figure 16: Confusion matrix and the most confusing pairs of the leave-one-out evaluation on

the ASL benchmark dataset tested on the 3rd subject.

Figure 17: Confusion matrix and the most confusing pairs of the leave-one-out evaluation on

the ASL benchmark dataset tested on the 4th subject.

27



Figure 18: Confusion matrix and the most confusing pairs of the leave-one-out evaluation on

the ASL benchmark dataset tested on the 5th subject.

point cloud; (3) the hand skeleton information can be extracted to obtain some

skeleton-based features for classification; (4) the RGB images can be included

in the model; and (5) the architecture of the CNN model can be explored to

improve its performance and efficiency.

7. Conclusions450

In this paper, we propose a novel method of multiview augmentation and

inference fusion for ASL alphabet recognition from depth images using a Con-

volutional Neural Network (CNN). Multiview augmentation first retrieves the

3D information embedded in a depth image, and then generates more data for

different perspective views. The result has shown that it outperforms the tradi-455

tional image augmentation methods because it can simulate realistic perspective

variations that the traditional methods cannot. Inference fusion copes with the

interclass similarity issues caused by perspective variations and finger occlu-

sions. It comprehends information of all individual views, and then outputs

28



the final prediction, which has been proved to be effective in further improv-460

ing the model’s performance. Our method has been successfully evaluated on

two public datasets, the ASL benchmark dataset and the NTU digit dataset.

The experimental results have demonstrated that our method makes significant

improvement compared to the previous work, achieving recognition accuracies

of 100% and 93% in the half-half and the leave-one-out experiments, respec-465

tively, on the ASL benchmark dataset, and achieving recognition accuracies of

100% for both the half-half and the leave-one-out experiments on the NTU digit

dataset.

Acknowledgment

This research work was supported by the National Science Foundation grant470

CMMI-1646162 on cyber-physical systems and also by the Intelligent Systems

Center at Missouri University of Science and Technology. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the National Science

Foundation.475

References

[1] C. Oz, M. C. Leu, Recognition of finger spelling of american sign language

with artificial neural network using position/orientation sensors and data

glove, in: International Symposium on Neural Networks, Springer, 2005,

pp. 157–164.480

[2] C. Oz, M. C. Leu, Linguistic properties based on american sign language

isolated word recognition with artificial neural networks using a sensory

glove and motion tracker, Neurocomputing 70 (16) (2007) 2891–2901.

[3] N. Pugeault, R. Bowden, Spelling it out: Real-time asl fingerspelling recog-

nition, in: Computer Vision Workshops (ICCV Workshops), 2011 IEEE485

International Conference on, IEEE, 2011, pp. 1114–1119.

29



[4] C. Wang, Z. Liu, S.-C. Chan, Superpixel-based hand gesture recognition

with kinect depth camera, IEEE transactions on multimedia 17 (1) (2015)

29–39.

[5] A. I. Maqueda, C. R. del Blanco, F. Jaureguizar, N. Garćıa, Human–490

computer interaction based on visual hand-gesture recognition using volu-

metric spatiograms of local binary patterns, Computer Vision and Image

Understanding 141 (2015) 126–137.

[6] W. Nai, Y. Liu, D. Rempel, Y. Wang, Fast hand posture classification using

depth features extracted from random line segments, Pattern Recognition495

65 (2017) 1–10.

[7] A. Kuznetsova, L. Leal-Taixé, B. Rosenhahn, Real-time sign language

recognition using a consumer depth camera, in: Proceedings of the IEEE

International Conference on Computer Vision Workshops, 2013, pp. 83–90.

[8] W. Wohlkinger, M. Vincze, Ensemble of shape functions for 3d object classi-500

fication, in: Robotics and Biomimetics (ROBIO), 2011 IEEE International

Conference on, IEEE, 2011, pp. 2987–2992.

[9] C. Zhang, X. Yang, Y. Tian, Histogram of 3d facets: A characteristic

descriptor for hand gesture recognition, in: Automatic Face and Gesture

Recognition (FG), 2013 10th IEEE International Conference and Work-505

shops on, IEEE, 2013, pp. 1–8.

[10] C. Zhang, Y. Tian, Histogram of 3d facets: A depth descriptor for human

action and hand gesture recognition, Computer Vision and Image Under-

standing 139 (2015) 29–39.

[11] L. Rioux-Maldague, P. Giguere, Sign language fingerspelling classification510

from depth and color images using a deep belief network, in: Computer

and Robot Vision (CRV), 2014 Canadian Conference on, IEEE, 2014, pp.

92–97.

30



[12] C. Keskin, F. Kıraç, Y. E. Kara, L. Akarun, Hand pose estimation and

hand shape classification using multi-layered randomized decision forests,515

in: European Conference on Computer Vision, Springer, 2012, pp. 852–863.

[13] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,

M. Cook, R. Moore, Real-time human pose recognition in parts from single

depth images, Communications of the ACM 56 (1) (2013) 116–124.

[14] C. Dong, M. C. Leu, Z. Yin, American sign language alphabet recogni-520

tion using microsoft kinect, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, 2015, pp. 44–52.

[15] P. Sermanet, Y. LeCun, Traffic sign recognition with multi-scale convo-

lutional networks, in: Neural Networks (IJCNN), The 2011 International

Joint Conference on, IEEE, 2011, pp. 2809–2813.525

[16] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification, in: Proceedings of the

IEEE international conference on computer vision, 2015, pp. 1026–1034.

[17] S. Ameen, S. Vadera, A convolutional neural network to classify american

sign language fingerspelling from depth and colour images, Expert Systems.530

[18] D. Avola, M. Bernardi, L. Cinque, G. L. Foresti, C. Massaroni, Exploiting

recurrent neural networks and leap motion controller for sign language and

semaphoric gesture recognition, arXiv preprint arXiv:1803.10435.

[19] S. M. LaValle, Planning algorithms, Cambridge university press, 2006.

[20] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016,535

http://www.deeplearningbook.org.

[21] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,

Dropout: a simple way to prevent neural networks from overfitting., Journal

of machine learning research 15 (1) (2014) 1929–1958.

31

http://www.deeplearningbook.org


[22] Z. Ren, J. Yuan, Z. Zhang, Robust hand gesture recognition based on finger-540

earth mover’s distance with a commodity depth camera, in: Proceedings

of the 19th ACM international conference on Multimedia, ACM, 2011, pp.

1093–1096.

[23] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Software Tools.

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-545

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-

enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,550

Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heteroge-

neous systems, software available from tensorflow.org (2015).

URL https://www.tensorflow.org/

[25] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980.555

[26] L. Ma, W. Huang, A static hand gesture recognition method based on the

depth information, in: Intelligent Human-Machine Systems and Cybernet-

ics (IHMSC), 2016 8th International Conference on, Vol. 2, IEEE, 2016,

pp. 136–139.

32

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

	Introduction
	Related Work
	Proposed Method

	Multiview Augmentation
	CNN Model
	Multiview Inference Fusion
	Experiments
	Datasets
	Preprocessing
	Evaluation Metric
	Some CNN Training Details

	Results and Discussion
	Evaluation of the CNN Architecture
	Evaluation of the Multiview Augmentation and Inference Fusion Strategies
	Impact of the Number of Top-K Candidates
	Performance Comparison with State-of-the-Art Methods on the ASL Benchmark Dataset
	Performance Evaluation on the NTU Digit Dataset
	Feature Visualization
	Failure Case Studies

	Conclusions

